4 research outputs found

    Collective Communication Patterns Using Time-Reversal Terahertz Links at the Chip Scale

    Full text link
    Wireless communications in the terahertz band have been recently proposed as complement to conventional wired interconnects within computing packages. Such environments are typically highly reverberant, hence showing long channel impulse responses and severely limiting the achievable rates. Fortunately, this communications scenario is static and can be pre-characterized, which opens the door to techniques such as time reversal. Time reversal acts a spatial matched filter and has a spatiotemporal focusing effect, which allows not only to increase the achievable symbol rates, but also to create multiple spatial channels. In this paper, the multi-user capability of time reversal is explored in the context of wireless communications in the terahertz band within a computing package. Full-wave simulations are carried out to validate the approach, whereas modulation streams are simulated to evaluate the error rate as a function of the transmitted power, symbol rate, and number of simultaneous transmissions

    Exploration of Time Reversal for Wireless Communications within Computing Packages

    Full text link
    Wireless Network-on-Chip (WNoC) is a promising paradigm to overcome the versatility and scalability issues of conventional on-chip networks for current processor chips. However, the chip environment suffers from delay spread which leads to intense Inter-Symbol Interference (ISI). This degrades the signal when transmitting and makes it difficult to achieve the desired Bit Error Rate (BER) in this constraint-driven scenario. Time reversal (TR) is a technique that uses the multipath richness of the channel to overcome the undesired effects of the delay spread. As the flip-chip channel is static and can be characterized beforehand, in this paper we propose to apply TR to the wireless in-package channel. We evaluate the effects of this technique in time and space from an electromagnetic point of view. Furthermore, we study the effectiveness of TR in modulated data communications in terms of BER as a function of transmission rate and power. Our results show not only the spatiotemporal focusing effect of TR in a chip that could lead to multiple spatial channels, but also that transmissions using TR outperform, BER-wise, non-TR transmissions it by an order of magnitud

    Genomic analysis of sewage from 101 countries reveals global landscape of antimicrobial resistance

    Get PDF
    Antimicrobial resistance (AMR) is a major threat to global health. Understanding the emergence, evolution, and transmission of individual antibiotic resistance genes (ARGs) is essential to develop sustainable strategies combatting this threat. Here, we use metagenomic sequencing to analyse ARGs in 757 sewage samples from 243 cities in 101 countries, collected from 2016 to 2019. We find regional patterns in resistomes, and these differ between subsets corresponding to drug classes and are partly driven by taxonomic variation. The genetic environments of 49 common ARGs are highly diverse, with most common ARGs carried by multiple distinct genomic contexts globally and sometimes on plasmids. Analysis of flanking sequence revealed ARG-specific patterns of dispersal limitation and global transmission. Our data furthermore suggest certain geographies are more prone to transmission events and should receive additional attention

    Mycotoxins in Foodstuffs

    No full text
    corecore